The Power of Integrated Abstraction of Data-centric Human/Machine Computations

Atsuyuki Morishima, Norihide Shinagawa
Shoji Mochizuki
University of Tsukuba

VLDS2011 held with VLDB2011, Seattle, Sep. 2011

Outline

- 1. Background
- 2. CyLog
- 3. Prototype Development
- 4. Related Work and Discussions

The Complementary Nature of Human/Machine Computations

- High-speed computation without errors
- Never forget things
- Work without a break

- Pattern Recognition
- Common Sense
- Gather Information Offline
- Create new ideas

Background

- Many "Crowdsourcing Systems (Applications)" have shown their success [Doan, Ramakrishnan, Halevy 2011]
 - ESP Games
 - Q&A Services
 - reCAPCHA
 - Video Sharing
 - ...

Our Challenge: Develop a Systematic Framework to Quickly Build Programs for the Integration of Human/Machine Computations

A Natural (and Important) Question

What is a good *abstraction* to describe (and program) such applications of human/machine computation?

- ESP Games
- Q&A Services
- reCAPCHA
- Video Sharing
- ..

A possibility: Since they are data-centric, database languages can be a starting point to develop such an abstraction

Integrated Abstraction of Data-centric Human/Machine Computations: An Example of CyLog Rule

metadata(x, y) :- img(x), keyword(x, y), inDict(y)

Evaluated by data

Evaluated by humans

Evaluated by

Many Ongoing Projects

- We saw exciting ongoing projects in publications in 2011
 - Qurk [MIT]
 - sCOOP/hQuery [Stanford & Santa-Cruz]
 - CrowdDB [UC Berkeley, ETH Zurich]

...

 They try to achieve database functions in the presence of human data-sources

How is CyLog Different?

- Introduces the concept of <u>rational data source</u>, as a new type of Web data source
- <u>Open Predicates/Attributes</u> to model the interaction with people
- <u>Data games</u> for obtaining appropriate values
- Our first international presentation was in 2010!*

*Atsuyuki Morishima. A Database Abstraction for Social Applications, KJDB2010, May 2010.

Outline

- 1. Background
- 2. CyLog
- 3. Prototype Development
- 4. Related Work and Discussions

Point 1: Datalog-like Declarative Language

metadata(x, y) :- img(x), keyword(x, y), inDict(y)

Evaluated by machine

Evaluated by humans

Evaluated by machine

pam

bob

pat

kate

ann

Point 2: Open Predicates (1/3) - CWA

Parent(pam, bob)

Parent(bob, pat)

Parent(kate, pat)

Parent(kate, ann)

Ancestor(X,Y) <- Parent(X,Y),

Ancestor(X,Z) <- Parent(X, Y), Ancestor(Y, Z)

?- Ancestor(pam, pat)

yes

?- Ancestor(pam, ann)

No

Point 2: Open Predicates (3/3) - Details

- Can have open attributes
 keyword(x,y)/open<- img(x)
- Possible to actively ask people keyword(x,y)/open{group}:active
- Can be an open "fact" img(x)/open
- Open for a specified set of humans keyword(x,y)/open{group}

Point 3: Data Games (1/2)

Challenge: Obtaining appropriate values in the presence of human data sources.

Approaches:

- Majority Voting
- Probabilistic Approach*
- Approach Using Item-Response Theory*
- Data Games
- *Mentioned in [Parameswaran et al. 2011]

Point 3: Data Games (2/2)

- A concept to connect data flows with reward systems
- Models each human as a <u>rational data source</u> who behaves rationally according to the rewards given in the games.

- This framework gives a possibility to use the game theory as an analysis tool.
- We provide some built-in data games to define the reward and aggregation to produce values.

Games A game can be described with players, their options, and payoffs				
Ex1) payoff matrix of a simple ESP Game				
Player A∖B	Term A	Term B		
Term A	(1, 1) Solution	(0,0)		
Term B	(0,0)	Solution (1,1)		
Ex2) payoff matrix of a Q&A Service Game				
Player A∖B	Best Answer	Worst Answer		
Best Answer	(15, 15) Solution	(30, 0)		
Second Best Answer	(0,30)	(0,30)		

Game Aggregations

Duplicate Game

Player A∕B	Term A	Term B
Term A	(1, 1) Term A	(0,0)
Term B	(0,0)	(1,1) Term B

PathTable p

Duplicate(p)*Duplicate_v(p)

1 A MetadataInput Term A to A 2 B MetadataInput Term A B	$\underline{\text{Order}}$	Player	Rel	Action		Player
2 B MetadataInput Term A B	1	A	MetadataInput	Term A	to	A
	2	В	MetadataInput	Term A		В

	Player	Payoff	Value
to	A	1	Term A
	В	1	Term A

Built-in Game Aggregations

The following game aggregations are different to each other in what are chosen for the output values and in how payoff points are given to players.

- Duplicates (Values given by more than one player)
- Majority (Values given by the largest number of people)
- Unique (Values given by only one person)
- Intersection (Values given by everyone)
- Union (All values given by any player)
- First (The value given first)

Discussions on Data Games

- The data game concept is widely applicable beyond the real "games," since there are many applications in which connecting dataflow with feedback to people is the key.
- How to deal with payoff points depends on applications
- We believe that the data game is a general concept
 - The games can be used to obtain the "correct" values,
 - They can be used to obtain values chosen based on other criteria
 - The data games can handle wider situations beyond the AMT-style crowdsourcing setting.

Example: Little Known Hot Spots

- Show (possibly a part of) the list of restaurant
- Label each restaurant as
 - L1: Good
 - L2: Not good
 - L3: I have never been there
- Give more points to people who labeled as "Good" those restaurants that are good on average but labeled as "I have never been there" by many people

Data: MetadataInput(file, keyword)/open <- File(file) Metadata(file, g(file):keyword)/game:g(file) <- File(File) Game: Game Aggregation Game Guard g(file)@time(10): Duplicate, {MetadataInput} Game Skolem Function Game Aggregation Game Aggregation Relations for the PathTable

Outline

- 1. Background
- 2. CyLog
- 3.) Prototype System
- 4. Related Work and Discussions

Outline

- 1. Background
- 2. CyLog
- 3. Prototype System
- 4. Related Work and Discussions

Related Work(1/3)

Recent Work: Qurk, sCOOP/hQuery, CrowdDB

- Common or Similar Points
 - Declarative approach
 - Concepts similar to open predicates/attributes (hPred, CNULL,...)
- Points Unique to CyLog
 - Introduce rational data sources
 - Data games as a means to obtain appropriate values
 - Takes the human-as-a-data-sources approach to incorporate data games in the language.

Related Work(2/3)

Collective Knowledge base [Richardson, Domingos 2003]

- Common or Similar Points
 - Rules and facts can be added by humans
 - Feedback to contributors
- Points Unique to CyLog
 - Designed for data-centric applications in the presence of human data resources
 - Open predicates/attributes, data games

Related Work(3/3)

Turkalytics [Heymann, Garcia-Molina, 2011]

An analytics tool for Human Computation

Can be used to tune and optimize CyLog programs when executed with the Amazon Mechanical Turk.

Open Problems

- Optimization issues
- Advanced mechanisms for player selection
- Development of various types of data-games
- Design theory
- Definitive rationality

Some of the above are addressed in the related work

The Current Status

- Updating and extending the syntax of CyLog
 - The basic idea is the same
 - Nest Structure for the concise description
 - Support of Status values for complex games
- Developing a software platform open to public

Summary

- CyLog: Datalog-like <u>declarative</u> language
- Introduces the concept of <u>rational data</u> <u>source</u> as a new type of Web data source
- Open predicates/attributes to interact with people
- *Data games* for obtaining appropriate values

The FusionCOMP Project:

http://www.kc.tsukuba.ac.jp/~mori/isbuilder/